Diophantine approximation and run-length function on β-expansions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics for β-shifts and Diophantine approximation

We investigate the β-expansion of an algebraic number in an algebraic base β. Using tools from Diophantine approximation, we prove several results that may suggest a strong difference between the asymptotic behaviour of eventually periodic expansions and that of non-eventually periodic expansions.

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

Diophantine approximation and Diophantine equations

The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...

متن کامل

Diophantine Approximation on Veech

— We show that Y. Cheung’s general Z-continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates in an ...

متن کامل

Bounds on the concentration function in terms of Diophantine approximation

We demonstrate a simple analytic argument that may be used to bound the Lévy concentration function of a sum of independent random variables. The main application is a version of a recent inequality due to Rudelson and Vershynin, and its multidimensional generalisa-tion. Des bornes pour la fonction de concentration enmatì ere d'approximation Diophantienne. Nous montrons un simple raison-nement ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2019

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2019.01.017